[2017 New New Lead2pass Cisco 100-105 New Questions Free Download (161-180)

2017 June Cisco Official New Released 100-105 Dumps in Lead2pass.com! 100% Free Download! 100% Pass Guaranteed! The Cisco 100-105 PDF, 100-105 VCE and 100-105 exam questions and answers at Lead2pass are written and prepared by Cisco affiliated trainers and lecturers with decades of experience in the IT field. This ensures that you are equipped with the latest and most current information to give you a better chance of passing the Cisco 100-105 exam. Following questions and answers are all new published by Cisco Official Exam Center: http://www.lead2pass.com/100-105.html QUESTION 161Refer to the exhibit. Which two statements are true about the loopback address that is configured on RouterB? (Choose two.) A. It ensures that data will be forwarded by RouterB.B. It provides stability for the OSPF process on RouterB.C. It specifies that the router ID for RouterB should be 10.0.0.1.D. It decreases the metric for routes that are advertised from RouterB.E. It indicates that RouterB should be elected the DR for the LAN. Answer: BCExplanation: A loopback interface never comes down even if the link is broken so it provides stability for the OSPF process (for example we use that loopback interface as the router-id) - The router-ID is chosen in the order below:+ The highest IP address assigned to a loopback (logical) interface. + If a loopback interface is not defined, the highest IP address of all active router's physical interfaces will be chosen.-> The loopback interface will be chosen as the router ID of RouterB - QUESTION 162Which characteristics are representative of a link-state routing protocol? (Choose three.) A. provides common view of entire topologyB. exchanges routing tables with neighborsC. calculates shortest pathD. utilizes event-triggered updatesE. utilizes frequent periodic updates Answer: ACDExplanation:Each of routers running link-state routing protocol learns paths to all the destinations in its "area" so we can say although it is a bit unclear.Link-state routing protocols generate routing updates only (not the whole routing table) when a change occurs in the network topology soLink-state routing protocol like OSPF uses Dijkstra algorithm to calculate the shortest path -> . Unlike Distance vector routing protocol (which utilizes frequent periodic updates), link-state routing protocol utilizes event-triggered updates (only sends update when a change occurs) -> QUESTION 163Refer to the exhibit. The network is converged. After link-state advertisements are received from Router_A, what information will Router_E contain in its routing table for the subnets 208.149.23.64 and 208.149.23.96? A. 208.149.23.64[110/13] via 190.173.23.10, 00:00:07, FastEthemet0/0 208.149.23.96[110/13] via 190.173.23.10, 00:00:16, FastEthemet0/0B. 208.149.23.64[110/1] via 190.172.23.10, 00:00:07, Serial1/0 208.149.23.96[110/3] via 190.173.23.10, 00:00:16, FastEthemet0/0C. 208.149.23.64[110/13] via 190.173.23.10, 00:00:07, Serial1/0 208.149.23.96[110/13] via 190.173.23.10, 00:00:16, Serial1/0 208.149.23.96[110/13] via 190.173.23.10, 00:00:16, FastEthemet0/0D. 208.149.23.64[110/3] via 190.172.23.10, 00:00:07, Serial1/0 208.149.23.96[110/3] via 190.173.23.10, 00:00:16, Serial1/0 Answer: AExplanation:Router E learns two subnets subnets 208.149.23.64 and 208.149.23.96 via Router_A through FastEthernet interface. The interface cost is calculated with the formula 108 / Bandwidth. For FastEthernet it is 108 / 100 Mbps = 108 / 100,000,000 = 1. Therefore the cost is 12 (learned from Router_A) + 1 = 13 for both subnets -> The cost through T1 link is much higher than through T3 link (T1 cost = 108 / 1.544 Mbps = 64; T3 cost = 108 / 45 Mbps = 2) so surely OSPF will choose the path through T3 link -> Router_E will choose the path from Router_A through FastEthernet0/0, not Serial1/0.In fact, we can quickly eliminate answers B, C and D because they contain at least one subnet learned from Serial1/0 -> they are surely incorrect. QUESTION 164What information can be used by a router running a link-state protocol to build and maintain its topological database? (Choose two.) A. hello packetsB. SAP messages sent by other routersC. LSAs from other routersD. beacons received on point-to-point linksE. routing tables received from other link-state routersF. TTL packets from designated routers Answer: AC QUESTION 165Lab Simulation - CLI Configuration Attention: In practical examinations, please note the following, the actual information will prevail. 1. Name of the router is xxx2. Enable, secret password is xxx3. Password In access user EXEC mode using the console is xxx4. The password to allow telnet access to the router is xxx5. IP information Answer: Router>enableRouter#config terminalRouter(config)#hostname GothaGotha(config)#enable secret mi222keGotha(config)#line console 0Gotha(config-line)#password G8tors1 Gotha(config-line)#exitGotha(config)#line vty 0 4Gotha(config-line)#password dun63lapGotha(config-line)#login Gotha(config-line)#exitGotha(config)#interface fa0/0Gotha(config-if)#no shutdownGotha(config-if)#ip address 209.165.201.4 255.255.255.224 Gotha(config)#interface s0/0/0Gotha(config-if)#ip address 192.0.2.190 255.255.255.240 Gotha(config-if)#no shutdownGotha(config-if)#exitGotha(config)#router ripGotha(config-router)#version 2Gotha(config-router)#network 209.165.201.0 Gotha(config-router)#network 192.0.2.176Gotha(config-router)#endGotha#copy run start QUESTION 166Lab Simulation - OSPF Answer: The question mentioned Boston router was not configured correctly or incomplete so we should check this router first. Click on PC-B to access the command line interface (CLI) of Boston router. Boston>enable (type cisco as its password here) Boston#show running-config First, remember that the current OSPF Process ID is 2 because we will need it for later configuration.

Next notice that in the second ?network? command the network and wildcard mask are 192.168.155.0 and 0.0.0.3 which is equivalent to 192.168.155.0 255.255.255.252 in term of subnet mask. Therefore this subnetwork's range is from 192.168.155.0 to 192.168.155.3 but the ip address of s0/0 interface of Boston router is 192.168.155.5 which don't belong to this range -> this is the reason why OSPF did not recognize s0 interface of Boston router as a part of area 0. So we need to find a subnetwork that s0 interface belongs to IP address of S0 interface: 192.168.155.5/30Subnet mask: /30 = 1111 1111.1111 1111.1111 1111.1111 1100 Increment: 4Network address (which IP address of s0 interface belongs to): 192.168.155.4 (because 4 * 1 = 4 < 5)Therefore we must use this network instead of 192.168.155.0 network Boston#configure terminalBoston(config)#router ospf 2Boston(config-router)#no network 192.168.155.0 0.0.0.3 area 0Boston(config-router)#network 192.168.155.4 0.0.0.3 area 0Boston(config-router)#end Boston#copy running-config startup-config Finally, you should issue a ping command from Boston router to Lancaster router to make sure it works well. Boston#ping 192.168.43.1 QUESTION 167This topology contains 3 routers and 1 switch. Complete the topology. Drag the appropriate device icons to the labeled DeviceDrag the appropriate connections to the locations labeled Connections. Drag the appropriate IP addresses to the locations labeled IP address (Hint: use the given host addresses and Main router information) To remove a device or connection, drag it away from the topology. Use information gathered from the Main router to complete the configuration of anyadditional routers. No passwords are required to access the Main router. The config terminal command has been disabled for the HQ router. The router does not requireany configuration. Configure each additional router with the following: Configure the interfaces with the correct IP address and enable the interfaces. Set the password to allow console access to consolepwSet the password to allow telnet access to telnetpwSet the password to allow privilege mode access to privpw Note: Because routes are not being added to the configurations, you will not be ableto ping through the internetwork.All devices have cable autosensing capabilities disabled. All hosts are PC's Answer: Explanation: (1) Configure two routers on the left and right with these commands: Router1 = router on the left (2) Assign appropriate IP addresses to Fa0/0 & Fa0/1 interfaces: Router1>enableRouter1#configure terminalRouter1(config)#interface fa0/0Router1(config-if)#ip address 192.168.152.190 255.255.255.240Router1(config-if)#no shutdown Router1(config-if)#interface fa0/1Router1(config-if)#ip address 192.168.152.142 255.255.255.240Router1(config-if)#no shutdown (3) Set passwords (configure on two routers) + Console password: Router1(config-if)#exitRouter1(config)#line console 0Router1(config-line)#password consolepwRouter1(config-line)#login Router1(config-line)#exit + Telnet password: Router1(config)#line vty 0 4Router1(config-line)#password telnetpw Router1(config-line)#loginRouter1(config-line)#exit + Privilege mode password: Router1(config)#enable password privpw Save the configuration: Router1(config)#exitRouter1#copy running-config startup-config (4) Configure IP addresses of Router2 (router on the right) Router2>enableRouter2#configure terminalRouter2(config)#interface fa0/0Router2(config-if)#ip address 192.168.152.238 255.255.255.240Router2(config-if)#no shutdown Router2(config-if)#interface serial0/0Router2(config-if)#ip address 192.168.152.174 255.255.255.240Router2(config-if)#no shutdown QUESTION 168To what type of port would a cable with a DB-60 connector attach? A. Serial portB. Console portC. Ethernet portD. Fibre optic port Answer: A QUESTION 169A network administrator is connecting PC hosts A and B directly through their Ethernet interfaces as shown in the graphic. Ping attempts between the hosts are unsuccessful. What can be done to provide connectivity between the hosts? (Choose two.) A. A crossover cable should be used in place of the straight-through cable.B. A rollover cable should be used in place of the straight-through cable.C. The subnet masks should be set to 255.255.255.192D. A default gateway needs to be set on each host. E. The hosts must be reconfigured to use private IP addresses for direct connections of this type.F. The subnet masks should be set to 255.255.255.0 Answer: AF QUESTION 170Refer to the exhibit. What kind of cable should be used to make each connection that is identified by the numbers shown? A. 1 - Ethernet Crossover cable 2 - Ethernet straight-through cable 3 - Fiber Optic cable 4 - Rollover cableB. 1 - Ethernet straight-through cable2 - Ethernet straight-through cable3 - Serial cable4 - Rollover cableC. 1 -Ethernet rollover cable2 - Ethernet crossover cable3 - Serial cable4 - Null-modem cableD. 1 - Ethernet straight-through cable2 -Ethernet Crossover cable3 - Serial cable4 - Rollover cableE. 1 - Ethernet straight-through cable2 - Ethernet Crossover cable3 -Serial cable4 - Ethernet Straight-through cable Answer: B QUESTION 171Which of the following are types of flow control? (Choose three.) A. bufferingB. cut-throughC. windowingD. congestion avoidanceE. load balancing Answer: ACD Explanation: http://www.info-it.net/cisco/ccna/exam-tips/flow-control.php During Transfer of data, a high speed computer is generating data traffic a lot faster than the network device can handle in transferring to destination, so single gateway or destination device cannot handle much amount of traffic that is called "Congestion". Buffering The Technie is used to control the data transfer when we have congestion, when a network device receive a data it stores in memory section and then transfer to next destination this process called "Buffering". Windowing Whereas Windowing is used for flow control by the Transport layer. Say the sender device is sending segments and the receiver device can accommodate only a fixed number of segments before it can accept more, the two devices negotiate the window size during the connection setup. This is done so that the sending device doesn't overflow the receiving

device's buffer. Also the receiving device can send a single acknowledgement for the segments it has received instead of sending an acknowledgement after every segment received. Also, this window size is dynamic meaning, the devices can negotiate and change the window size in the middle of a session. So if initially the window size is three and the receiving device thinks that it can accept more number of segments in its buffer it can negotiate with the sending device and it increase it to say 5 for example. Windowing is used only by TCP since UDP doesn't use or allow flow control. QUESTION 172How many simultaneous Telnet sessions does a Cisco router support by default? A. 1B. 2C. 3D. 4E. 5F. 6 Answer: E QUESTION 173What is the purpose of flow control? A. To ensure data is retransmitted if an acknowledgement is not received.B. To reassemble segments in the correct order at the destination device.C. To provide a means for the receiver to govern the amount of data sent by the sender.D. To regulate the size of each segment. Answer: CExplanation: http://whatis.techtarget.com/definition/flow-control Flow control is the management of data flow between computers or devices or between nodes in a network so that the data can be handled at an efficient pace. Too much data arriving before a device can handle it causes data overflow, meaning the data is either lost or must be retransmitted. For serial data transmission locally or in a network, the Xon/Xoff protocol can be used. For modem connections, either Xon/Xoff or CTS/RTS (Clear to Send/Ready to Send) commands can be used to control data flow. In a network, flow control can also be applied by refusing additional device connections until the flow of traffic has subsided. QUESTION 174Refer to the exhibit. How many collision domains are shown? A. oneB. twoC. threeD. fourE. sixF. twelve Answer: BExplanation: Hubs create single collision and broadcast domains. QUESTION 175Which IP address is a private address? A. 12.0.0.1B. 168.172.19.39C. 172.20.14.36D. 172.33.194.30E. 192.169.42.34 Answer: CExplanation: QUESTION 176Which statement is true? A. An IPv6 address is 64 bits long and is represented as hexadecimal characters.B. An IPv6 address is 32 bits long and is represented as decimal digits.C. An IPv6 address is 128 bits long and is represented as decimal digits.D. An IPv6 address is 128 bits long and is represented as hexadecimal characters. Answer: DExplanation: http://www.cisco.com/en/US/technologies/tk648/tk872/technologies white paper0900aecd 8026003d.pdfOne of the key advantages IPv6 brings is the exponentially larger address space. The following will outline the basic address architecture of IPv6.128-bit-long addressesRepresented in hexadecimal format:Uses CIDR principles: prefix/prefix lengthx:x:x:x:x:x:x;x, where x is a 16-bit hex field The last 64 bits are used for the interface ID QUESTION 177If an Ethernet port on a router was assigned an IP address of 172.16.112.1/20, what is the maximum number of hosts allowed on this subnet? A. 1024B. 2046C. 4094D. 4096E. 8190 Answer: CExplanation: Each octet represents eight bits. The bits, in turn, represent (from left to right): 128, 64, 32, 16, 8, 4, 2, 1 Add them up and you get 255. Add one for the all zeros option, and the total is 256. Now take away one of these for the network address (all zeros) and another for the broadcast address (all ones). Each octet represents 254 possible hosts. Or 254 possible networks. Unless you have subnet zero set on your network gear, in which case you could conceivably have 255. The CIDR addressing format (/20) tells us that 20 bits are used for the network portion, so the maximum number of networks are 220 minus one if you have subnet zero enabled, or minus 2 if not. You asked about the number of hosts. That will be 32 minus the number of network bits, minus two. So calculate it as (2(32-20))-2, or (212)-2 = 4094 QUESTION 178Which statements are TRUE regarding Internet Protocol version 6 (IPv6) addresses? (Choose three.) A. An IPv6 address is divided into eight 16-bit groups.B. A double colon (::) can only be used once in a single IPv6 address.C. IPv6 addresses are 196 bits in length.D. Leading zeros cannot be omitted in an IPv6 address.E. Groups with a value of 0 can be represented with a single 0 in IPv6 address. Answer: ABE Explanation: IPv6 addresses are divided into eight 16-bit groups, a double colon (::) can only be used once in an IPv6 address, and groups with a value of 0 can be represented with a single 0 in an IPv6 address. The following statements are also true regarding IPv6 address: IPv6 addresses are 128 bits in length. Eight 16-bit groups are divided by a colon (:). Multiple groups of 16-bit 0s can be represented with double colon (::). Double colons (::) represent only 0s. Leading zeros can be omitted in an IPv6 address. The option stating that IPv6 addresses are 196 bits in length is incorrect. IPv6 addresses are 128 bits in length. The option stating that leading zeros cannot be omitted in an IPv6 address is incorrect. Leading zeros can be omitted in an IPv6 address. QUESTION 179Which of the following IP addresses are valid Class B host addresses if a default Class B mask is in use? (Choose two.) A. 10.6.8.35B. 133.6.5.4C. 192.168.5.9D. 127.0.0.1E. 190.6.5.4 Answer: BEExplanation: The IP addresses 133.6.5.4 and 190.6.5.4 are both valid Class B addresses when a default mask is in use. The Class B default mask is 255.255.0.0 and the range of valid addresses is 128.0.0.0- 191.255.255.255.The IP address 10.6.8.35 is a Class A address. The Class A default mask is 255.0.0.0 and the range of valid addresses is 1.0.0.0 - 127.255.255.255, with the exception of the range 127.0.0.1 - 127.255.255.255, which is reserved and cannot be assigned. The IP address 192.168.5.9 is a Class C address. The Class C default mask is 255.255.255.0 and the range of valid addresses is 192.0.0.0 - 223.255.255.255. The IP address 127.0.0.1 is a Class A address, but it comes from a reserved portion that cannot be assigned. The range 127.0.0.1 - 127.255.255.255 is used for diagnostics, and although any address in the range will work as a diagnostic address, 127.0.0.1 is known as the loopback address. If you can ping this address, or any address in the

Lead2pass: http://www.lead2pass.com/100-105.html [100% Exam Pass Guaranteed]

127.0.0.1 - 127.255.255.255 range, then the NIC is working and TCP/IP is installed. The Class A default mask is 255.0.0.0 and the range of valid addresses is 1.0.0.0 - 127.255.255.255, with the exception of the range 127.0.0.1 - 127.255.255.255, which is reserved and cannot be assigned. QUESTION 180How many addresses will be available for dynamic NAT translation when a router is configured with the following commands? Router(config)#ip nat pool TAME 209.165.201.23 209.165.201.30 netmask 255.255.255.224Router(config)#ip nat inside source list 9 pool TAME A. 7B. 8C. 9D. 10E. 24F. 32 Answer: B Explanation: 209.165.201.23 to 209.165.201.30 provides for 8 addresses. Lead2pass guarantees your 100-105 exam success with our exam resources. Our 100-105 braindumps are the latest and developed by experienced IT certification professionals working in today's prospering companies and data centers. All our 100-105 braindumps include 100-105 real exam questions which guarantee your 100% success of 100-105 exam in your first try. 100-105 new questions on Google Drive: https://drive.google.com/open?id=0B3Syig5i8gpDSjRoR0JJWVA2ZDQ 2017 Cisco 100-105 exam dumps (All 321 Q&As) from